

Технологичные горелки

Энергосберегающие и удобные в обслуживании решения для промышленного термооборудования

СОДЕРЖАНИЕ

Содержание	2
NOXMAT "Надежность в работе"	3-5
Основы технологии горения	6-7
Устройство горелок	8-13
Подбор оптимального способа нагрева	14-20
Обзор продукции	21
RHGBS "ETAMAT" Рекуперативная высокоскоростная горелка с рекуператором	
из металлической пены	22-25
RHGB Рекуперативная высокоскоростная горелка со стальным рекуператором	26-31
K-RHGB Рекуперативная высокоскоростная горелка с керамическим рекуператором	32-36
K-RHGBE Рекуперативная высокоскоростная горелка с керамической рекуперативной	
топочной трубой	37-41
K-RHGB RN "REMAT" Рекуперативная высокоскоростная горелка для модернизации с	
керамическим рекуператором	42-44
HGBE Высокоскоростная горелка	45-47
MSTR Излучающие трубы из легированной стали или керамики	48-51
Аксессуары	52-53
Единицы измерения, пересчёт & информация	54-59
Заметки	60-61
Анкета для выбора горелки	62
История NOXMAT	63

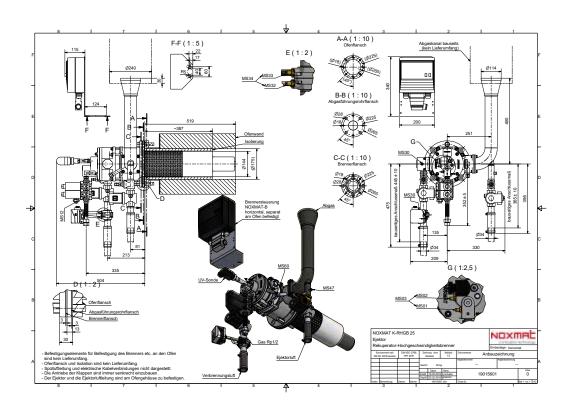
NOXMAT – "НАДЕЖНОСТЬ В РАБОТЕ"

Энергосберегающая и удобная в обслуживании технологичная горелка "Made in Germany"

Мы производим промышленные горелки и излучающие трубы, а также принадлежности для нагрева промышленного термообрабатывающего оборудования. Наша продукция реализуется более чем в 30 странах мира и используется в установках термообработки и нагрева чёрных и цветных металлов.

Наша продукция разработана и изготовлена с высочайшим уровнем надежности и удобства.

Вместе с производителями промышленных установок термической обработки и, конечно, самими пользователями мы найдем оптимальные решения в соответствии с вашими требованиями.


Обладая более чем 25-летним опытом работы в этой области, мы являемся компетентным партнером для Вас во всех областях промышленного нагревательного оборудования.

NOXMAT – "НАДЕЖНОСТЬ В РАБОТЕ"

Планирование и проектирование горелочных устройств для промышленных термообрабатывающих установок

NOXMAT поддерживает Вас с самого начала в планировании и проектировании систем нагрева для Вашего предприятия. Обладая более чем 25-летним опытом работы в области технологий промышленных горелок, мы являемся для Вас компетентным партнером. От простых мер по модернизации до сложных новых установок, наши инженеры помогут Вам сделать лучший выбор и конфигурацию для Вашего оборудования - всегда в центре наших усилий: оптимальная выгода для клиентов, высочайшая эффективность, а также экономия энергии и уменьшение выбросов..

Поддержка

Компетентная сервисная команда NOXMAT знакома со всеми видами работ, связанными с нагревательным оборудованием промышленных газовых печей. Наши специалисты имеют статус «эксперта по оборудованию для термообработки» и оснащены полным набором необходимой измерительной техники.

Наш девиз: Лучшие в своем деле!

Обслуживание

Цель нашей сервисной команды - поддерживать нагревательное оборудование Вашего предприятия в отличном состоянии и восстанавливать его так, чтобы оно могло работать эффективно и без сбоев.

Оптимизация

В промышленных печах оператор часто не сразу замечает потенциальную экономию, которая часто может быть достигнута сравнительно простыми мерами.

Модернизация

Модернизация нагревательного оборудования печей является реальной альтернативой новым инвестициям. Нередко может быть достигнута значительная экономия в 30% и более. Увеличение производительности и улучшение качества продукции могут быть дальнейшими преимуществами такой модернизации.

ОСНОВЫ ТЕХНОЛОГИИ ГОРЕНИЯ

Треугольник горения

С помощью треугольника горения можно представить условия, необходимые для горения. Важно, чтобы все условия совпадали во времени и пространстве.

Три условия, изображенные в виде треугольника горения:

- Топливо
- Кислород
- Энергия зажигания (тепло, механические искры, электричество)

Quelle:

Правильное соотношение этих трёх компонентов является четвёртым необходимым основным условием для запуска процесса горения.

Коэффициент полезного действия сгорания η Г

Коэффициент полезного действия (КПД) сгорания определяет использование тепла, возникающего в результате сгорания топлива при номинальной мощности. Учитываются только потери тепла за счет охлаждения выхлопных газов до температуры окружающей среды.

$$\eta F = 100 \% - qA$$
 (qA: Потери выхлопных газов [%])

Приблизительный расчет по следующей формуле:

$$q_A = (\mathcal{G}_a - \mathcal{G}_t) \cdot \left(\frac{A2}{21 - O_2} + B\right)$$

А2 = 0,66 (Природный газ

В = 0,009 Природный газ)

⊕а – Температура выхлопных газов [°C]

⊕ – Температура сжигаемого воздуха [°C]

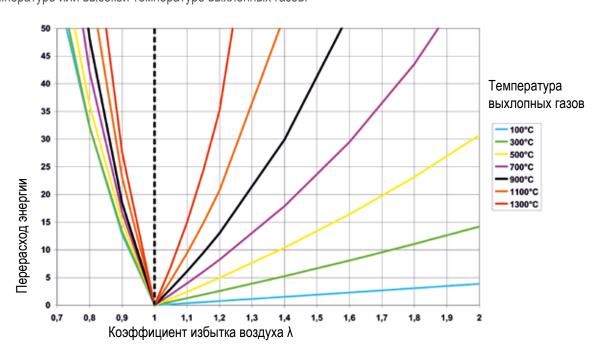
О₂ – Содержание кислорода в выхлопных газах [%]

Коэффициент избытка воздуха λ

Коэффициент избытка воздуха λ представляет собой отношение подаваемого количества воздуха I₀, к теоретически требуемому минимальному количеству воздуха I₀,min

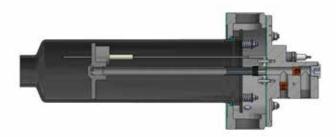
$$\lambda = \frac{I_0}{I_{0,\min}}$$

λ = 1 означает стехиометрическое соотношение количества воздуха к количеству топлива, то есть, все молекулы топлива полностью вступают в реакцию со всем кислородом воздуха, без недостатка или избытка кислорода.


λ < 1 (например 0,9) означает "Недостаток воздуха "

λ > > 1 (например 1,1) означает "Избыток воздуха "

Примерный расчет может быть произведен, например, по содержанию кислорода в выхлопных газах :


$$\lambda \approx \frac{21}{21 - \kappa_{O2}}$$

Оптимальное содержание остаточного кислорода (K_{02}) в выхлопных газах должно составлять от 2,5 до 3,5%. Слишком высокая лямбда вызывает избыточное потребление газа, которое еще сильнее увеличивается при высокой рабочей температуре или высокой температуре выхлопных газов.

УСТРОЙСТВО ГОРЕЛОК

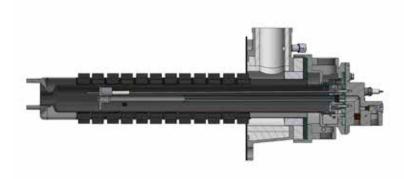
Конструктивные особенности и функции высокоскоростной горелки

Горелка состоит из двухсоставной передней части, топочной трубы, газовой трубки и электрода.

Воздух для горения проходит по воздухопроводу через воздушную часть в топочную трубу и далее через завихряющую пластину в камеру сгорания. Завихряющая пластина закручивает потоки воздуха для горения так, что происходит интенсивное смешивание с топливным газом в камере сгорания. Топливный газ течет по газопроводу через газовую часть и газовую трубку к завихряющей пластине. Там поток газа разделяется. Основная часть топливного газа поступает в камеру сгорания, где интенсивно смешивается с сильно закрученным воздухом для горения. Меньшая часть топливного газа поступает в камеру зажигания на вихревой пластине и воспламеняется высоковольтной искрой зажигания.

Точно налаженные условия в камере зажигания обеспечивают легкое зажигание и запуск горелки (холодный запуск). Пламя выходит из топочной трубы с высокой скоростью.

Выхлопные газы горелки вытягиваются через отдельный газоотвод для выхлопных газов.


Продувочный воздух подается дозировано к топливному газу в газовой части через сопло продувочного воздуха. Он обеспечивает хорошие условия зажигания. Кроме того, при выключении горелки он продувает газовую трубку от оставшегося в ней топливного газа. Таким образом предотвращается дожигание.

Высокоскоростные горелки NOXMAT имеют возможность подключения охлаждающего воздуха и могут быть выполнены с этой опцией по запросу. Охлаждающий воздух течет из соединения через воздушную часть прямо через топочную трубу в излучающую трубу или в камеру печи.

В зависимости от технологии, пламя контролируется с помощью тока контроля пламени УФ-датчика или тока ионизации электрода, который одновременно является электродом зажигания и контроля пламени.

Конструктивные особенности и функции рекуперативной горелки

Горелка состоит из трехсоставной передней части, рекуператора, а также из размещающихся внутри него компонентов топочной трубы, газовой трубки и электрода.

Воздух для горения проходит по воздухопроводу через воздушную часть и рекуператор, где он предварительно нагревается за счет использования тепла отработанных газов. На выходе рекуператора большая часть воздуха для горения (первичный воздух) проходит через отверстия во внутреннюю часть топочной трубы и далее через завихряющую пластину в камеру сгорания. Меньшая часть воздуха для горения (вторичный воздух) покидает рекуператор через кольцевой зазор у устья камеры сгорания и смешивается с пламенными газами, выходящими из камеры сгорания.

В начале воздушной части диафрагма позволяет распределять объем потока воздуха для горения. Воздух для горения может проходить как полностью через рекуператор, так и частично напрямую через топочную трубу во внутренней части горелки. Так внутренние компоненты горелки защищены от перегрева при высокотемпературных нагрузках.

Топливный газ проходит через газопровод, газовую часть горелки и газовую трубку к завихряющей пластине. Там поток газа разделяется. Основная часть топливного газа поступает в камеру сгорания, где интенсивно смешивается с сильно закрученным воздухом для горения. Меньшая часть топливного газа поступает в камеру зажигания завихряющей пластины и воспламеняется высоковольтной искрой зажигания. Точно подобранные условия в камере зажигания обеспечивают легкое зажигание и запуск горелки (холодный запуск).

Пламенные газы выходят из топочной трубы с высокой скоростью.

Они смешиваются с вторичным воздухом. Достигается полноценное сгорание. Ступенчатая подача топливного газа и воздуха для горения вызывает задержку процесса сгорания, что приводит к более низкой температуре сгорания и, следовательно, к более низкой эмиссии NOx.

УСТРОЙСТВО ГОРЕЛОК

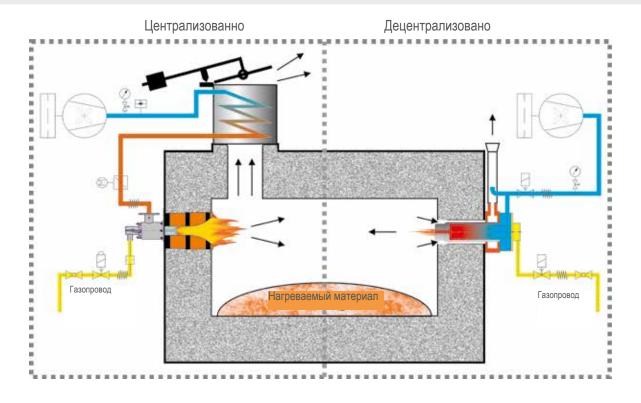
Выхлопной газ проходит через рекуператор в выхлопную часть и затем покидает горелку. В рекуператоре выхлопной газ передаёт часть своего тепла воздуху для горения. Воздух для горения подогревается. Предварительный нагрев приводит к экономии топлива.

Продувочный воздух подается дозированно к топливному газу в газовой части через сопло продувочного воздуха. Он обеспечивает хорошие условия зажигания. Кроме того, он продувает газовую трубку при выключении горелки от оставшегося в ней топливного газа. Таким образом предотвращается дожигание.

Рекуперативные горелки NOXMAT оснащены отдельным подключением для охлаждающего воздуха. Оттуда охлаждающий воздух проходит непосредственно через топочную трубу в излучающую трубу.

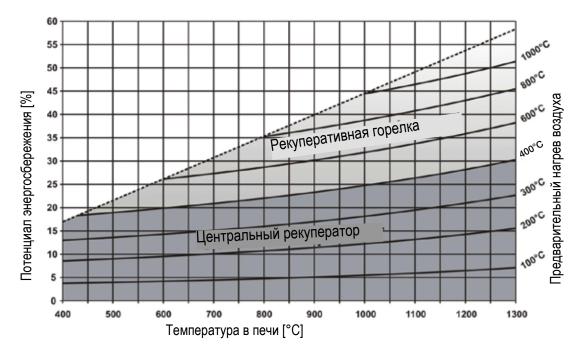
В зависимости от технологии, пламя контролируется с помощью тока контроля пламени УФ-датчика или тока ионизации электрода, который одновременно является электродом зажигания и контроля пламени.

Потери выхлопных газов

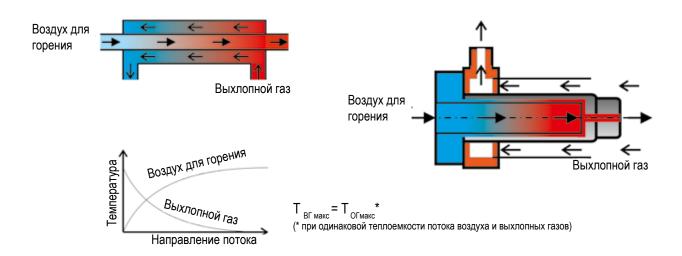

Горелка холодного воздуха, как следует из названия, работает без предварительного нагрева воздуха для горения. Это делает её особенно простой с точки зрения строения. Конечно, с ростом температуры процесса увеличивается температура выхлопных газов и, следовательно, так же потери выхлопных газов. При температуре печи 1000 ° С потери выхлопных газов при прямом нагреве составляют почти 50%, то есть только 50% поступающей энергии топливного газа используется для нагрева печи / материала, остальные 50% выходят неиспользованными из камеры сгорания. Таким образом, КПД сжигания также составляет 50%.

Рекуперация тепла - экономия энергии за счет предварительного нагрева воздуха для горения

Очень эффективным способом повышения КПД является предварительный нагрев воздуха для горения при помощи рекуперации тепла из выхлопных газов. За счет снижения температуры выхлопных газов температура воздуха для горения увеличивается, что напрямую увеличивает КПД сжигания.

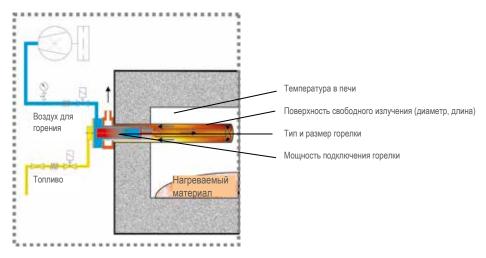

Снижение температуры выхлопных газов на 100 ° С приводит к увеличению КПД почти на 6%.

Рекуперация тепла может быть сделана централизованно, то есть выхлопные газы отдельных горелок пропускаются через один центральный теплообменник (центральный рекуператор), или также децентрализовано, т.е. каждая горелка имеет свой собственный теплообменник (рекуперативная горелка).



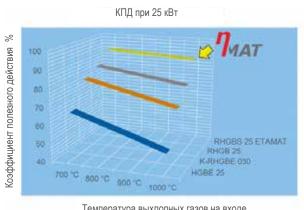
ПРИНЦИПЫ РАБОТЫ ГОРЕЛОК

Центральные рекуператоры встречаются часто и по сей день. Этот вариант имеет некоторые недостатки, такие как необходимость компенсации горячего воздуха и системы защиты рекуператора. Кроме того, все компоненты подачи воздуха для горения должны быть термостойкими и рассчитаны на большие объемные потоки. Эта система редко нагревает воздух для горения до 400 ° С. Предварительный нагрев воздуха и, следовательно, экономия энергии, как правило, намного выше с рекуперативными горелками (децентрализованная регенерация тепла), как показано на следующем графике:


В рекуперативной горелке используется чрезвычайно эффективный принцип противотока, при котором выхлопные газы передают наибольшее количество своей тепловой энергии воздуху для горения, текущему в противоположном направлении, и, таким образом, повышают КПД сжигания...

Факторы, влияющие на КПД сжигания

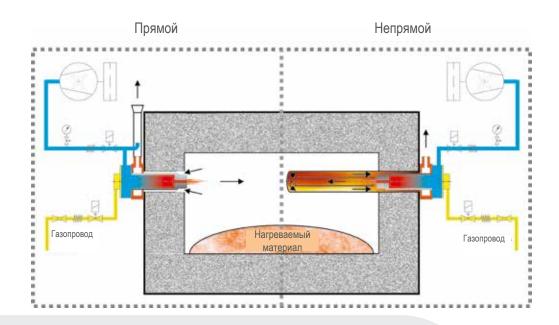
Как правило, при использовании горелки всегда стремятся к получению максимально возможной эффективности, чтобы снизить потребление энергии и, следовательно, выбросы, а также максимально эффективно использовать поставляемую энергию. КПД сжигания определяется не только горелкой, но также может зависеть и от других факторов.



В целом, КПД сжигания уменьшается с увеличением температуры в печи, поскольку температура выхлопных газов также увеличивается при прочих неизменных параметрах.

Хотя снижение мощности горелки сказывается положительно на эффективности, оно снижает качество сгорания и может привести к увеличению выбросов и поэтому рекомендуется только при определенных условиях.

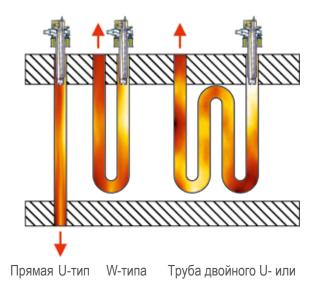
При непрямом нагреве увеличение свободной излучающей поверхности трубы-оболочки вызывает увеличение КПД, поскольку улучшается теплообмен в камере печи. Поэтому излучающие трубы-оболочки обычно не следует выбирать слишком маленькими.


Сама горелка, конечно, имеет решающее значение. На графике показаны разные эффективности разных типов горелок в зависимости от температуры выхлопных газов на входе.

ВЫБОР ОПТИМАЛЬНОГО НАГРЕВАТЕЛЬНОГО ОБОРУДОВАНИЯ

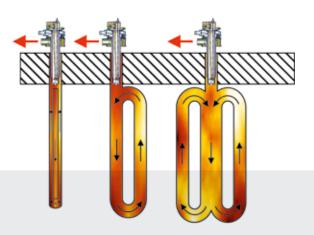
1. Прямой или непрямой нагрев?

В основном, выбор лежит между прямым и непрямым нагревом. При проектировании установки термической обработки сначала необходимо оценить, требуется ли непрямой нагрев или достаточно прямого нагрева для требуемого процесса.



- Прямое воздействие пламенных газов на материал
- Высокая циркуляция в печи
- Выхлопные газы должны быть специально удалены (через эжектор)
- Например, кузнечная печь
- Типичные мощности для рекуперативных горелок 50-250 кВт

- Нет прямого воздействия пламенных газов на материал
- Нет циркуляции в печи
- Выхлопные газы автоматически выходят из излучающей трубы (корпуса горелки)
- Например, печь термообработки с защитной газовой атмосферой
- Типичные мощности горелок 15-80 кВт (прямая изл. труба) или 120 кВт (труба Ф-типа)


Излучающие трубы без рециркуляции

Недостатки:

- Отсутствующая или ограниченная рекуперация тепла (высокая температура выхлопных газов)
- Неудовлетворительное распределение температуры

Излучающие трубы с рециркуляцией

Прямая Труба Р-типа Труба Ф-типа

Преимущества:

- Улучшенная рекуперация тепла за счет встроенного рекуператора
- Импульс горелки используется для рециркуляции
- 3 до 5-кратная рециркуляция дымовых газов внутри излучающей трубы
- Высокая скорость циркуляции способствует равномерному распределению температур и охлаждению пламени

ВЫБОР ОПТИМАЛЬНОГО НАГРЕВАТЕЛЬНОГО ОБОРУДОВАНИЯ

2. Предварительный нагрев воздуха или работа с холодным воздухом?

Дальше следует решить, должна ли система быть оснащена сравнительно простой высокоскоростной горелкой или высокоэффективной рекуперативной горелкой. В принципе, оба варианта возможны.

Высокоскоростная горелка работает без предварительного нагрева воздуха для горения с, соответственно, низким КПД. Однако, она намного дешевле при покупке. Высокоскоростные горелки предпочтительно используются в низкотемпературных установках, в которых высокая рекуперация тепла в любом случае невозможна. Если высокоскоростная горелка выбрана для непрямого нагрева, то используются только нерециркулирующие излучающие трубы.

При температуре в печи выше ок. 500 °C предварительный нагрев воздуха для горения, как правило, имеет смысл. Самый простой способ осуществить его — применить рекуперативные горелки. Для них характерны компактный дизайн и высокая энергоэффективность. Если они выбраны для непрямого нагрева, то используются рециркулирующие излучающие трубы.

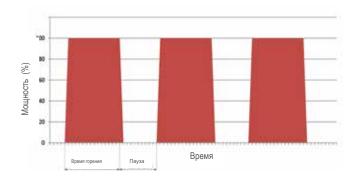
Как правило, в рекуперативных горелках используется двухступенчатое сгорание, т.е. объемный поток воздуха делится на первичный и вторичный воздух. КПД сжигания соответственно высокий, а выбросы низкие.

Упрощенную форму или недорогую альтернативу представляет одноступенчатая рекуперативная горелка K-RHGBE. КПД сжигания по-прежнему значительно выше, чем у горелки с холодным воздухом, но цена значительно ниже, чем у «стандартной» рекуперативной горелки.

3. Сталь или керамика?

Максимальная температура применения стальных рекуперативных горелок составляет 1150 °C.

При более высоких температурах применения до 1300 °C необходимо использовать керамические рекуператоры. В случае прямого нагрева это приблизительно температура в печи, но не в случае непрямого нагрева, поскольку здесь температура в излучающей трубе в некоторых случаях может быть значительно выше, чем температура в печи. Это не менее важно учитывать при проектировании горелок и излучающих труб. Как правило, тепловая нагрузка на горелку и излучающую трубу уменьшается за счет увеличения поверхности трубы-оболочки, а КПД сжигания увеличивается.



4. Режим работы: вкл.-выкл., больше-меньше или плавное регулирование?

Регулирование вкл.-выкл.

Обычно рекуперативные горелки работают в режиме «вкл.-выкл.» (стандартное применение). Этот вариант имеет несколько преимуществ:

- Экономичное использование
- Самая простая настройка горелок
- Максимальный импульс горелок (равномерность температуры)
- Горелки работают всегда в оптимальной рабочей зоне

Преимущество режима «вкл.-выкл.» особенно заметно при использовании быстро открывающихся газовых и воздушных клапанов, потому что горелка в течение кратчайшего времени достигает оптимальной рабочей точки и при прямом нагреве обеспечивает наилучшую циркуляцию / равномерность температуры в печи. Отсюда возникают особые требования к характеристикам зажигания горелки, которые оптимально выполняются запатентованной камерой зажигания во всех горелках NOXMAT. Время горения и пауз может быть настроено с помощью управления печью в зависимости от температурных требований, но не должно быть менее 15 и 5 секунд соответственно.

ВЫБОР ОПТИМАЛЬНОГО НАГРЕВАТЕЛЬНОГО ОБОРУДОВАНИЯ

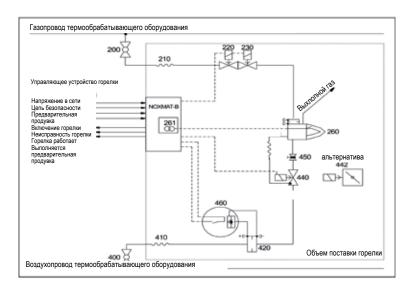
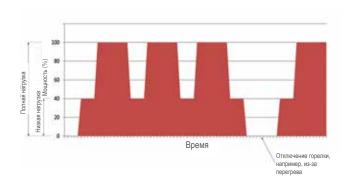


Рис: Примерная конструкция рекуперативной горелки с регулированием «вкл.-выкл.». Мощность горелки определяется установленным жиклёром для газа в горелке.

Описан	ние		
Газ		Воздух для горения	
200	Ручной запорный клапан	400	Ручной запорный клапан
210	Газовый шланг	410	Воздушный шланг
220	1. Запорный клапан без демпфера	420	Измерительная диафрагма
230	2. Запорный клапан без демпфера	440	Воздушный электромагнитный клапан без демпфера
260	Горелка	альтернатива 442	Воздушная электромагнитная заслонка без демпфера
261	Зажигание / Контроль пламени	450	Элемент регулировки воздуха
		460	Реле давления воздуха


Регулирование «больше-меньше»

Регулирование «больше-меньше» ныне используется сравнительно редко. В этом случае горелка обычно вообще не выключается (непрерывная работа), а переключается в зависимости от температурных требований только между двумя уровнями мощности.

Эта конфигурация предпочтительна, например, чтобы при прямом нагреве всегда обеспечивать положительное давление в камере сгорания или для горелок с плохим зажиганием, чтобы уменьшить вероятность отказа при пуске горелок. Только при превышении температуры в камере печи горелки отключаются с помощью управления печью.

Этот режим работы может быть реализован, например, с использованием двухступенчатых клапанов.

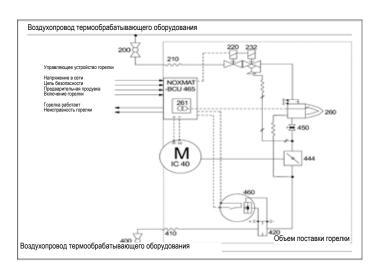


Рис: Примерная конструкция высокоскоростной горелки с регулированием «больше-меньше» (регулирование соотношения давлений). Соответствующий уровень мощности горелки определяется управлением печи.

Описан	ие						
Газ		Воздух для горения					
200	Ручной запорный клапан	400	Ручной запорный клапан				
210	Газовый шланг	410	Воздушный шланг				
220	1. Запорный клапан без демпфера	420	Измерительная диафрагма				
232	2. Запорный клапан без демпфера	444	Управление воздушным клапаном / Управление воздушной заслонкой				
260	Горелка	450	Элемент регулировки воздуха				
261	Зажигание / Контроль пламени	460	Реле давления воздуха				

ВЫБОР ОПТИМАЛЬНОГО НАГРЕВАТЕЛЬНОГО ОБОРУДОВАНИЯ

Плавное регулирование

Плавное регулирование горелки требует значительно более сложной технологии управления, чем режим работы «вкл.-выкл.». Горелка обычно зажигается на низкой мощности и затем может работать в зависимости от необходимой температуры на любом уровне мощности между низкой и высокой нагрузкой при непрерывной работе.

Этот режим работы может быть реализован, например, путем использования воздушного клапана, угол открытия которого изменяется в зависимости от температурных требований. Воздушный клапан должен управляться отдельно через управление печью. Количество газа обычно соотносится (адаптируется) автоматически в механическом соединении с помощью регулятора соотношений или объемов потока, так что коэффициент избытка воздуха λ поддерживается максимально постоянным на каждом уровне мощности.

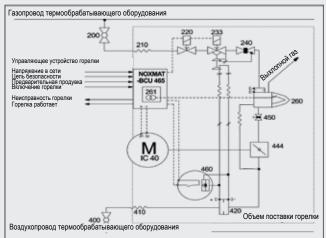


Рис: Пример конструкции плавного регулирования рекуперативной горелки (соотношение объема потоков). Соответствующая мощность горелки определяется управлением печи.

Описан	ие						
Газ		Воздух для горения					
200	Ручной запорный клапан	400	Ручной запорный клапан				
210	Газовый шланг	410	Воздушный шланг				
220	1. Запорный клапан без демпфера	420	Измерительная диафрагма				
233	2. Запорный клапан с регулятором соотношения давления	444	Управление воздушным клапаном / Управление воздушной заслонкой				
240	Элемент настройки для регулятора соотношения давления	450	Элемент регулировки воздуха				
260	Горелка	460	Реле давления воздуха				
261	Зажигание / Контроль пламени						

ОБЗОР ПРОДУКЦИИ

Серия RHGBS "ЕТАМАТ"

Рекуперативная высокоскоростная горелка с Рекуператором из металлической пены для непрямого нагрева промышленных печей 15-35 кВт

Серия RHGB

Рекуперативная высокоскоростная горелка со стальным рекуператором для прямого и непрямого нагрева промышленных печей 7-250 кВт

Серия K-RHGB

Рекуперативная высокоскоростная горелка с керамическим рекуператором для прямого и непрямого нагрева промышленных печей 9-250 кВт

Серия K-RHGBE

Рекуперативная высокоскоростная горелка с керамической рекуперативной топочной трубой для прямого и непрямого нагрева промышленных печей 9-100 кВт

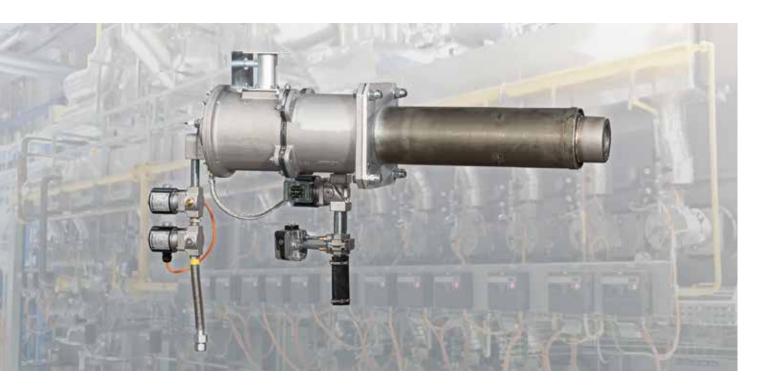
Серия K-RHGB RN " REMAT"

Рекуперативная высокоскоростная горелка для модернизации с керамическим рекуператором для непрямого нагрева промышленных печей 13-25 кВт

Серия HGBE

Высокоскоростная горелка для прямого и непрямого нагрева промышленных печей 9-160 кВт

Радиационные трубы в стальном или керамическом исполнении для непрямого нагрева промышленных печей



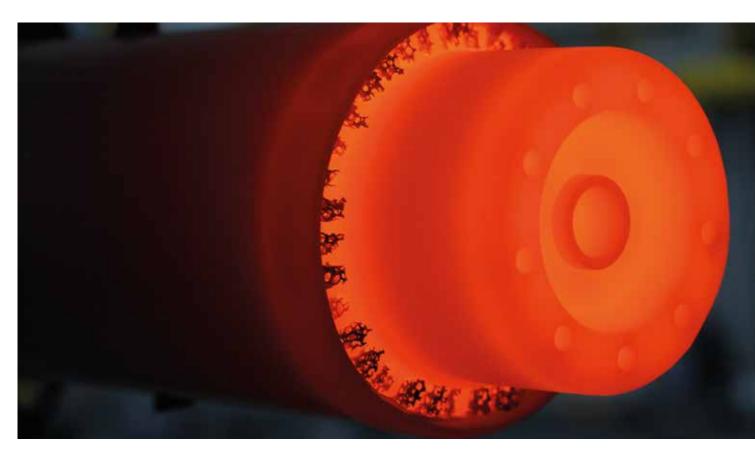
Аксессуары для промышленных систем отопления (управление горелкой, дутьевые вентиляторы для подачи воздуха на горение, газорегулирующие устройства, другие принадлежности)

СЕРИЯ RHGBS "ETAMAT"

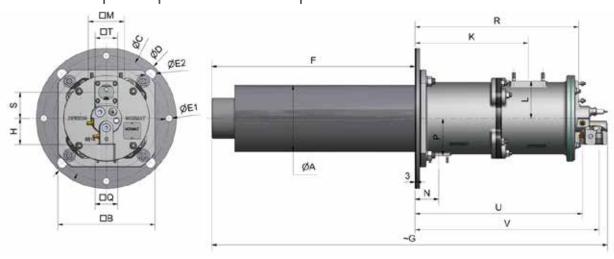
Рекуперативная высокоскоростная горелка с рекуператором из металлической пены для непрямого нагрева промышленных печей 15-35 кВт

Особенности & Преимущества

- Высокоскоростная горелка со встроенным рекуператором из металлической пены для максимально возможной рекуперации тепла, для непрямого нагрева
- Диапазон мощностей от 15 до 35 кВт
- КПД горения до 90%
- Низкоэмиссионное многоступенчатое сгорание
- Отличное распределение температуры благодаря сильному импульсу горелки
- Очень низкий уровень звукового давления: ниже 60 дБ(А)
- Простое обслуживание благодаря модульной конструкции
- Все подключения могут быть установлены с шагом смещения 90 °
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Возможно отдельное подключение охлаждающего воздуха для удобства проведения режимов охлаждения
- Доступна в полной и базовой комплектации



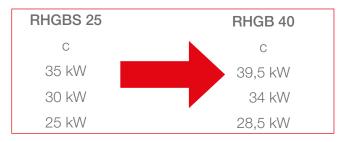
Технические данные


Тип горелки RHGBS		25
Номинальная тепловая мощность	кВт	35
Минимальная тепловая мощность	кВт	15
Номинальное давление подключения потока газа [1]	мбар	115
Номинальное давление подключения потока воздуха, непрямой нагрев [1]	мбар	100
Максимальная температура на рекуператоре	°C	1050
Номинальный диаметр рекуператора с газонаправляющей трубой	MM	160
Номинальный диаметр подключения газа	DN	15
Номинальный диаметр подключения воздуха для горения	DN	25
Номинальный диаметр подключения охлаждающего воздуха	DN	40
Топливо		Природный газ

Возможны технические изменения. [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок.

СЕРИЯ RHGBS "ETAMAT"

Основные размеры / Базовая горелка

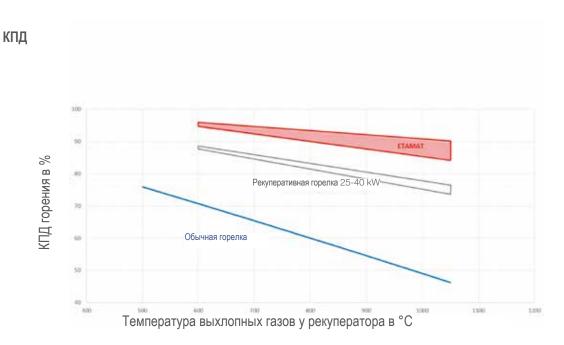

Размер		Основные размеры											
горелки	А	В	С	D	E1/E2	F	G	Н					
	MM												
RHGBS 25	160	252	335	375	18/28	545	1060	70					

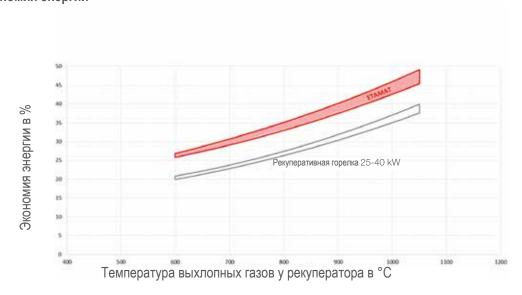
Размер горелки		Установочные размеры														
		Выхлопі	ная част	Ь	Воздух для горения			Охлаждающий воздух				Продувочный воздух		Газ		
	K	L	ا	M	N	Р		Q	R	S		Т	l	J		V
	Выхлопная часть			Ь	Воздух для горения			Охлаждающий воздух			дух	ММ	Дюйм	MM	Дюйм	
	K	L	M	N	Р	Q	R	S	Т	U	V	Ø 42	448	G3/8	493	Rp1/2

Применение

- Использование на новых установках или в качестве замены для существующих горелок с ребристым рекуператором для дополнительного увеличения эффективности
- Режимы работы горелки Вкл/Выкл, Бол/Мал и Плавный
- 3aмeнa RHGB 40 на RHGBS 25

Сравнение со стандартной горелкой RHGB 40




Экономия энергии

КПД горения может составлять до 90% при расчёте, что температура отработанного газа при входе в рекуператор равна 1050 °C. В зависимости от рабочего режима это приводит к экономии энергии по сравнению с предыдущими рекуперативными горелками еще на 5–10 процентов.

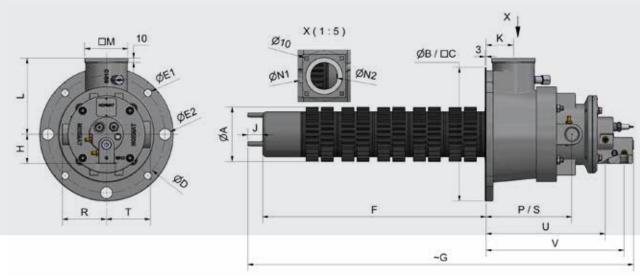
Значения на диаграммах приведены в качестве начальных данных. Точные значения мы сможем получить на основе ваших технических данных и варианта использования.

Экономия энергии

Рекуперативная высокоскоростная горелка со стальным рекуператором для прямого и непрямого нагрева промышленных печей 7-250 кВт

Особенности & Преимущества

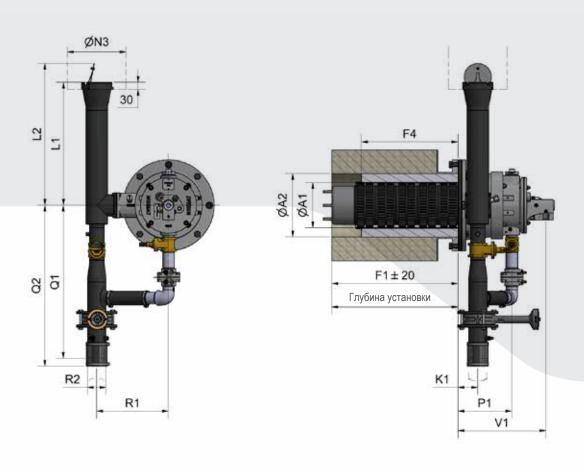
- Высокоскоростная горелка со встроенным рекуператором из стали для эффективной рекуперации тепла, для прямого и непрямого нагрева
- Широкий диапазон мощностей от 7 до 250 кВт
- Максимальная температура применения до 1150°С
- Высокий КПД
- Низкоэмиссионное многоступенчатое сгорание
- Отличное распределение температуры благодаря сильному импульсу горелки
- Беспроблемное прямое зажигание при полной нагрузке благодаря надежной системе зажиганияя
- Простое обслуживание благодаря модульной конструкции
- Все подключения могут быть установлены с шагом 90 °
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Возможно отдельное подключение охлаждающего воздуха для удобства проведения режимов охлаждения


Тип горелки RHGB		15	25	40	80	100	160	250
Номинальная тепловая мощность [1]	кВт	15	25	40	80	100	160	250
Минимальная тепловая мощность [1]	кВт	7	13	25	40	50	80	100
Номинальное давление подключения потока газа [2]	мбар	50	50	50	50	70	50	70
Номинальное давление подключения потока воздуха, непрямой нагрев [2]	мбар	60	60	80	80	90	80	90
Номинальное давление подключения потока воздуха, прямой нагрев [2] [3]	мбар	60	60	80	90	100	90	130
Необходимый поток воздуха для эжектора [3]	Нм3/ч	20	20	60	150	190	260	350
Максимальная температура на рекуператоре	°C	1150	1150	1150	1150	1150	1150	1150
Номинальный диаметр рекуператора	MM	102	130	130	180	180	230	230
Номинальный диаметр подключения газа	DN	15	15	15	15	20	20	25
Номинальный диаметр подключения воздуха для горения	DN	25	25	25	40	40	50	65
Номинальный диаметр подключения охлаждающего воздуха	DN	25	40	40	40	40	50	65
Номинальный диаметр подключения воздуха для эжектора	DN	25	25	25	40	65	80	80
Топливо [4]	Природный газ, Пропан, Бутан							

Возможны технические изменения.

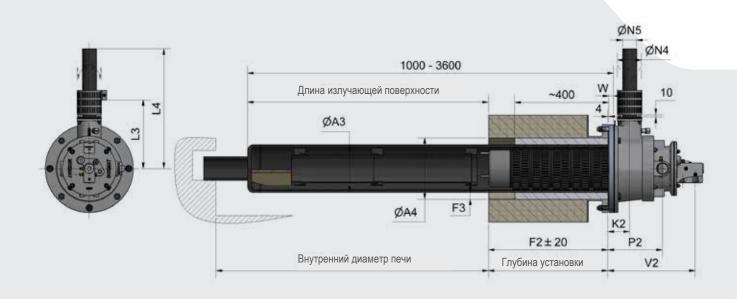
- [1] Различные значения мощности горелки возможны по запросу.
 [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок.
 [3] Контрольные значения измерены при температуре печи 1000°С и 90% рециркуляции при номинальной мощности горелки.
 [4] Другие топливные газы должны быть предварительно согласованы с NOXMAT.

Основные размеры / Базовая горелка


Размер		Основные размеры											
горелки	А	В	С	D	E1/E2	F*	G	Н	J				
	мм												
RHGB 15	102	265		225	19/28	535	950	80	20				
RHGB 25	130		250	280	18/	535	920	70	35				
RHGB 40	130		250	280	18/	535	920	70	35				
RHGB 80	180	375		335	18/28	535	930	50	35				
RHGB 100	180	375		335	18/28	535	950	60	35				
RHGB 160	230	490		445	24/34	535	970	70	10				
RHGB 250	230	490		445	24/24	535	970	70	10				

		Установочные размеры													
Размер горелки		Οτρ	работанні	ый газ		Воздух для горения			Охлаждающий воздух**			Продувочный воздух		Газ	
торелки	K	L	M	N1	N2	Р		R	S		T		U		V
			ММ			M	М	Дюйм	М	М	Дюйм	ММ	Дюйм	ММ	Дюйм
RHGB 15	60	150	ø90		55	185	85	G1	185	85	G1	270	G3/8	315	Rp1/2
RHGB 25	65	180	104	120	65	205	105	G1	205	105	G1.1/2	285	G3/8	330	Rp1/2
RHGB 40	65	180	104	120	65	205	105	G1	205	105	G1.1/2	285	G3/8	330	Rp1/2
RHGB 80	65	210	104	120	65	205	123	G1.1/2	205	123	G1.1/2	288	G3/8	330	Rp1/2
RHGB 100	65	210	104	120	65	205	123	G1.1/2	205	123	G1.1/2	288	G3/8	345	Rp3/4
RHGB 160	80	265	134	160	92	240	174	G2	240	175	G2**	342	G3/8	400	Rp3/4
RHGB 250	80	265	134	160	92	240	175	G2.1/2	240	176	G2**	342	G3/8	400	Rp1

(*) Длина может варьироваться, (**) опционально


Основные размеры / Установочные размеры Прямой нагрев

Размер	Основные размеры									
горелки	A1	A2	F1	F4						
	MM									
RHGB 15	106	160	519	398						
RHGB 25	135	200	521	398						
RHGB 40	135	200	521	398						
RHGB 80	185	260	519	400						
RHGB 100	185	260	519	400						
RHGB 160	236	300	519	400						
RHGB 250	251	300	519	400						

		Установочные размеры											
Размер		Отработ	анный газ			Воздух д	ля горения и	эжектора		Газ			
горелки	K1	L1	L2	N3	P1	Q1	Q2	R1	R2	V1			
		N	IM				MM			MM			
RHGB 15	76	506	583	240	201	375±10	398	250	34	331			
RHGB 25	79	506	583	240	219	375±10	404	281	34	344			
RHGB 40	79	506	583	240	219	375±10	404	281	34	344			
RHGB 80	81	506	583	240	221	630±10	658	311	76	346			
RHGB 100	81	506	583	240	221	690±10	722	311	76	361			
RHGB 160	96	1031	1127	280	256	720±10	753	350	89	416			
RHGB 250	96	1031	1127	280	256	770±10	800	350	89	416			

Основные размеры / Установочные размеры Непрямой нагрев

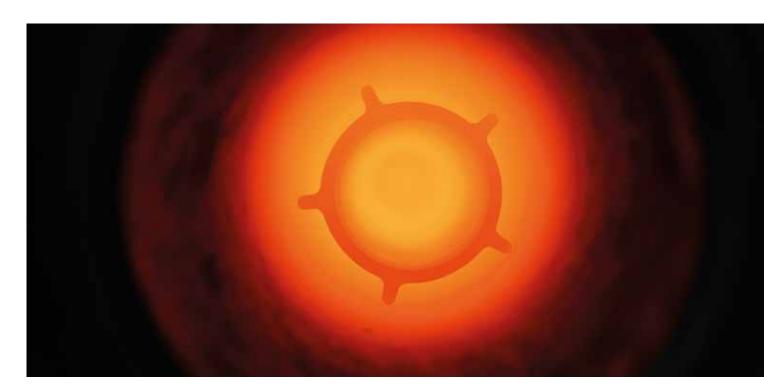
Размер	Основные размеры											
горелки	A3	A4	F2	F3								
	MM											
DUOD 15	120	181	513	30								
RHGB 15	150	207	495	28								
DUOD OF	150	207	508	28								
RHGB 25	200	261	497	30								
RHGB 40	150	207	508	28								
KIIGD 40	200	261	497	30								
RHGB 80	200	261	508	30								
RHGB 100	200	261	508	30								
RHGB 160*	236**	k.A.	512	k.A.								
RHGB 250*	251**	k.A.	512	k.A.								

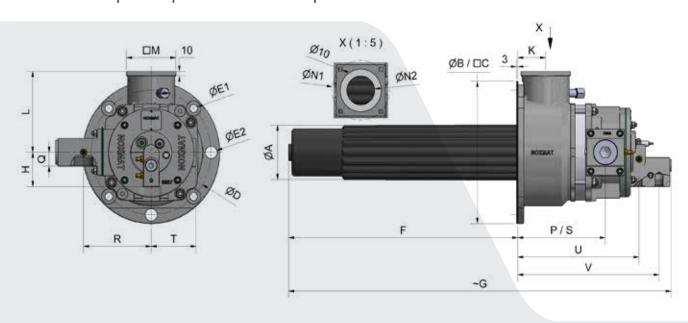
	Установочные размеры												
Размер			Отработанный	ВГ	Газ	Излучающая труба							
горелки	K2	L3	L4	N4	N5	P2	V2	W					
			MM	1		MM	MM	MM					
DUCD 15	82	229	450	102	42	207	337	15					
RHGB 15	100	229	450	102	42	225	355	15					
RHGB 25	92	262	480	102	42	232	357	20					
KINGB 25	103	262	480	102	42	243	368	20					
RHGB 40	92	262	480	102	48	232	357	20					
KNGB 40	103	262	480	102	48	243	368	20					
RHGB 80	92	292	510	102	60	232	357	20					
RHGB 100	92	292	510	102	60	232	372	20					
RHGB 160	103	347	565	140	89	263	423	20					
RHGB 250	103	347	565	140	89	263	423	20					

^{*} только при применении Р- и Ф-образных труб ** необходимый внутренний диаметр излучающей трубы

Рекуперативная высокоскоростная горелка с керамическим рекуператором для прямого и непрямого нагрева промышленных печей 7-250 кВт

Особенности & Преимущества

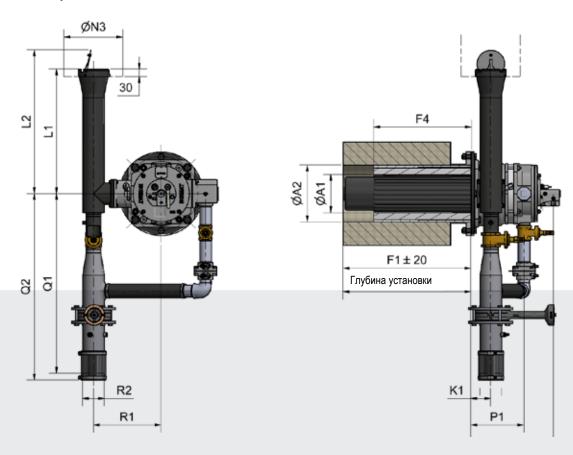

- Высокоскоростная горелка со встроенным рекуператором из керамики для эффективной рекуперации тепла, для прямого и непрямого нагрева
- Широкий диапазон мощностей от 9 до 250 кВт
- Максимальная температура применения до 1300°С
- Высокий КПД
- Низкоэмиссионное многоступенчатое сгорание
- Отличное распределение температуры благодаря сильному импульсу горелки
- Беспроблемное прямое зажигание при полной нагрузке благодаря надежной системе зажиганияя
- Простое обслуживание благодаря модульной конструкции
- Все подключения могут быть установлены с шагом 90 °
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Возможно отдельное подключение охлаждающего воздуха для удобства проведения режимов охлаждения


Технические данные

ТИП ГОРЕЛКИ K-RHGB		15	25	40	80	160	250
Номинальная тепловая мощность [1]	кВт	15	25	40	80	160	250
Минимальная тепловая мощность [1]	кВт	9	13	25	40	80	100
Номинальное давление подключения потока газа [2]	мбар	50	50	50	50	50	70
Номинальное давление подключения потока воздуха, непрямой нагрев [2]	мбар	60	80	80	80	80	100
Номинальное давление подключения потока воздуха, прямой нагрев [2] [3]	мбар	60	80	90	100	120	130
Необходимый поток воздуха для эжектора [3]	Нм3/ч	30	40	100	250	300	370
Максимальная температура на рекуператоре	°C	1300	1300	1300	1300	1300	1300
Номинальный диаметр рекуператора	MM	85	100	125	150	208	208
Номинальный диаметр подключения газа	DN	15	15	15	15	20	25
Номинальный диаметр подключения воздуха для горения	DN	25	25	40	40	50	65
Номинальный диаметр подключения охлаждающего воздуха	DN	25	40	40	40	50	50
Номинальный диаметр подключения воздуха для эжектора	DN	25	25	40	65	80	80
Топливо [4]			Природный	і газ, Пропа	ан, Бутан		

- Возможны технические изменения.
 [1] Различные значения мощности горелки возможны по запросу.
 [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок.
 [3] Контрольные значения измерены при температуре печи 1000°С и 90% рециркуляции при номинальной мощности горелки.
 [4] Другие топливные газы должны быть предварительно согласованы с NOXMAT.

Основные размеры / Базовая горелка



Размер	Основные размеры												
горелки	А	В	С	D	E1/E2 F		G	Н					
				N	IM								
K-RHGB 15	85		180	210	18/	535	910	80					
K-RHGB 25	100	265		225	18/28	535	880	70					
K-RHGB 40	125		252	280	18/	535	890	77					
K-RHGB 80	150		272	300	18/	535	880	50					
K-RHGB 160	208	440		395	24/34	535	960	70					
K-RHGB 250	208	440		395	24/34	625	1052	70					

							Уста	ановоч	ные разме	еры						
Размер	Отработанный газ					В	оздух дг	ія горен	RNI	Охлаж	дающиі	й воздух	Продувочн	ный воздух	Г	аз
горелки	K	L	М	N1	N2	Р	Q		R	S		T	ι	J	,	V
			ММ				ММ		Zoll	MN	И	Zoll	ММ	Zoll	ММ	Zoll
K-RHGB 15	60	130	96	110	35	185	30	125	G3/4	185	85	G3/4	259	G3/8	304	Rp1/2
K-RHGB 25	65	150	104	120	50	197	37	135	G1	197	98	G1.1/2	274	G3/8	319	Rp1/2
K-RHGB 40	65	180	115	134	65	205	30	158	G1.1/2	205	105	G1.1/2	283	G3/8	328	Rp1/2
K-RHGB 80	65	190	115	134	75	200	48	180	G1.1/2	200	123	G1.1/2	277	G3/8	319	Rp1/2
K-RHGB 160	85	245	134	160	82	240	41	234	G2	240	175	G2	332	G3/8	390	Rp3/4
K-RHGB 250	85	245	134	160	82	240	63	300	G2.1/2	240	175	G2	332	G3/8	390	Rp1

Основные размеры /Установочные размеры Прямой нагрев

	(Основные	размерь	ı				У	′станово	чные разме	ры			
Размер					Отработанный газ				Воздух для	горения и	и эжектора	3	Газ	
горелки	A1 A2 F1 F4			K1	L1	L2	N3	P1	Q1	Q2	R1	R2	V1	
		М	М			ММ					ММ			MM
K-RHGB 15	90	150	535	418	76	506	583	240	201	365±10	396	231	34	320
K-RHGB 25	105	175	535	387	81	506	583	240	213	365±10	396	251	34	335
K-RHGB 40	130	200	535	395	81	506	583	240	221	365±10	396	281	34	346
K-RHGB 80	155	230	535	398	81	506	583	240	216	730±10	758	275	89	335
K-RHGB 160	216	300	535	389	99	1031	1131	280	254	720±10	751	330	89	404
K-RHGB 250	230	315	625	482	99	1031	1131	280	254	700±10	730	330	89	404

Основные размеры / Установочные размеры Непрямой нагрев

		Основные	е размерь	ı	Установочные размеры									
Размер						Отра	аботанны	й газ		ВГ	Газ	Излучающая труба		
горелки	A3	A4	F2	F3	K2	L3	L4	N4	N5	P2	V2	W	X1	X2
		М	М				MM			MM	MM	MM	ММ	MM
V DUOD 15	100	160	513	30	82	212	430	42	102	207	326	15	90	100
K-RHGB 15	115	175	500	30	95	212	430	42	102	220	339	15	90	115
IX DUICD OF	115	175	513	31	87	232	450	42	102	219	341	15	90	115
K-RHGB 25	140	225	508	42	92	232	450	42	102	224	346	20	90	140
IZ DUIOD 40	140	225	508	42	92	262	480	48	102	231	357	20	90	140
K-RHGB 40	165	250	508	43	92	262	480	48	102	231	357	20	105	165
IX DUICD 00	165	250	508	43	92	262	480	60	102	227	346	20	105	165
K-RHGB 80	200	285	495	43	105	272	490	60	102	240	359	20	120	200

СЕРИЯ K-RHGBE

Рекуперативная высокоскоростная горелка с керамической рекуперативной топочной трубой для прямого и непрямого нагрева промышленных печей 9-100 кВт

Особенности & Преимущества

- Рентабельная высокоскоростная горелка со встроенной рекуперативной топочной трубой для эффективной рекуперации тепла
- Диапазон мощностей от 9 до 100 кВт
- Максимальная температура применения до 1300°С
- Высокий КПД
- Низкоэмиссионное одноступенчатое сгорание
- Отличное распределение температуры благодаря сильному импульсу горелки
- Беспроблемное прямое зажигание при полной мощности благодаря запатентованной системе зажигания
- Простое обслуживание благодаря модульной конструкции
- Все подключения могут быть установлены с шагом 90 °
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Возможно отдельное подключение охлаждающего воздуха для удобства проведения режимов охлаждения

СЕРИЯ K-RHGBE

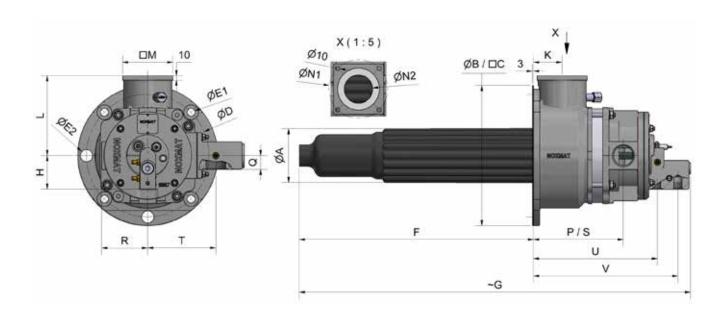
Технические данные

ТИП ГОРЕЛКИ K-RHGBE		15	30	50	100
Номинальная тепловая мощность [1]	кВт	15	30	50	100
Минимальная тепловая мощность [1]	кВт	9	15	25	50
Номинальное давление подключения потока газа [2]	мбар	50	50	50	70
Номинальное давление подключения потока воздуха, непрямой нагрев [2]	мбар	60	80	80	80
Номинальное давление подключения потока воздуха, прямой нагрев [2] [3]	мбар	n/a	80	90	110
Необходимый поток воздуха для эжектора [3]	Нм3/ч	n/a	50	120	300
Максимальная температура на рекуператоре	°C	1300	1300	1300	1300
Номинальный диаметр рекуператора	ММ	63	100	125	150
Номинальный диаметр подключения газа	DN	15	15	15	20
Номинальный диаметр подключения воздуха для горения	DN	20	25	40	40
Номинальный диаметр подключения охлаждающего воздуха	DN	20	40	40	40
Номинальный диаметр подключения воздуха для эжектора	DN	25	25	50	80
Топливо [4]		Природ	ный газ, Пропа	ан, Бутан	

Возможны технические изменения.

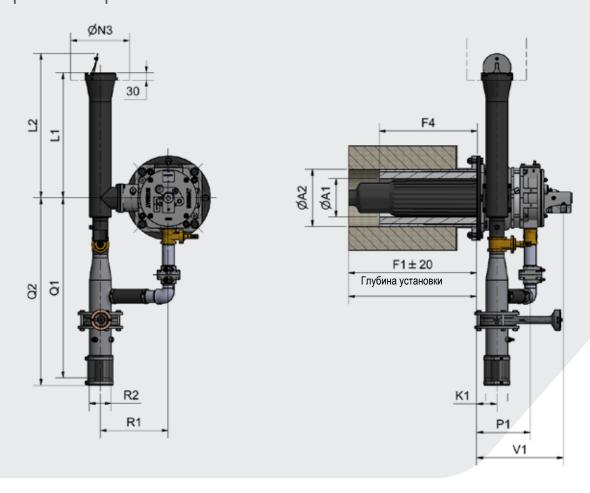
- Правличные значения мощности горелки возможны по запросу.

 [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок.


 [3] Контрольные значения измерены при температуре печи 1200°С и 90% рециркуляции при номинальной мощности горелки.

 [4] Другие топливные газы должны быть предварительно согласован с NOXMAT.

Основные размеры / Базовая горелка



Размер				Основные	размеры			
горелки	А	В	С	D	E1/E2	F	G	Н
				М	M			
K-RHGBE 15	60		180	210	18/	535	910	80
K-RHGBE 30	100	265		225	18/28	535	880	70
K-RHGBE 50	125		252	280	18/	535	895	77
K-RHGBE 100	150		272	300	18/	535	905	50

								Установоч	чные разм	іеры						
Размер		Отра	ботанны	й газ		Возд	ух для г	орения	Охла	аждаю	щий вс	здух	Продувоч	ный воздух	Г	аз
горелки	K	L	М	N1	N2	Р		R	S	Q		T	ı	J		V
			ММ			М	М	Дюйм	ı	ИМ		Дюйм	ММ	Дюйм	ММ	Дюйм
K-RHGBE 15	60	130	96	110	35	185	125	G3/4	185	30	125	G3/4	259	G3/8	304	Rp1/2
K-RHGBE 30	65	150	104	120	50	197	135	G1	197	37	135	G1.1/2	274	G3/8	319	Rp1/2
K-RHGBE 50	65	180	115	134	65	205	158	G1.1/2	205	30	158	G1.1/2	283	G3/8	328	Rp1/2
K-RHGBE 100	65	190	115	134	75	200	180	G1.1/2	200	48	180	G1.1/2	279	G3/8	334	Rp3/4

СЕРИЯ K-RHGBE

Основные размеры / Установочные размеры Прямой нагрев

		Основные	е размерь	ı	Ус				/становочные размеры					
Размер					Отработанный газ					Газ				
горелки	A1	A2	F1	F4	K1	L1	L2	N3	P1	Q1	Q2	R1	R2	V1
		М	M			MN	1				MM			ММ
K-RHGBE 15	66	125	535	418	76	506	583	240	201	365±10	396	231	34	320
K-RHGBE 30	105	175	535	387	81	506	583	240	213	365±10	396	251	34	335
K-RHGBE 50	130	200	535	395	81	506	595	240	221	565±10	595	281	60	346
K-RHGBE 100	155	230	535	398	81	506	583	240	216	730±10	758	275	89	350

Основные размеры / Установочные размеры непрямой нагрев

		Основные	е размерь	ol .		Установочные					ые размеры						
Размер горелки					Отработанный газ					ВГ	Газ	Излу	/чающая т	руба			
	A3	A4	F2	F3	K2	L3	L4	N4	N5	P2	V2	W	X1	X2			
		М	М				MM			MM	MM	MM	MM	ММ			
K-RHGBE 15	80	151	513	36	82	212	430	42	102	207	326	15	90	80			
K-KIIGDE IS	100	160	513	30	82	212	430	42	102	207	326	15	90	100			
K-RHGBE 30	115	175	513	31	87	232	450	42	102	219	341	15	90	115			
K-KIIGBE 30	140	225	508	42	92	232	450	42	102	224	346	20	90	140			
IX DUIODE EQ	140	225	508	42	92	262	480	48	102	231	357	20	90	140			
K-RHGBE 50	165	250	508	43	92	262	480	48	102	231	357	20	105	165			
IZ DI IODE 400	165	250	508	43	92	262	480	60	102	227	361	20	105	165			
K-RHGBE 100	200	285	495	43	105	272	490	60	102	240	374	20	120	200			

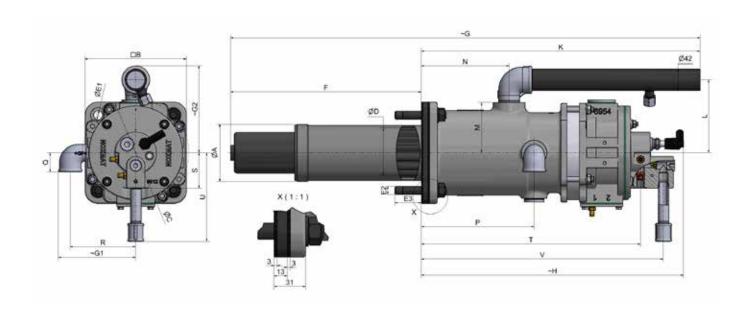
СЕРИЯ K-RHGB RN "REMAT"

Рекуперативная высокоскоростная горелка для модернизации с керамическим рекуператором для непрямого нагрева промышленных печей 13-25 kW

Особенности & Преимущества

- Высокоскоростная горелка со встроенным керамическим рекуператором для эффективной рекуперации тепла, для непрямого нагрева
- Особенно подходит для модернизации камерных печей с защитной атмосферой
- Все медиа подключения подходят к существующим соединениям
- Беспроблемное прямое зажигание при полной мощности благодаря запатентованной системе зажигания, в том числе при холодном старте
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Диапазон мощностей от 13 до 25 кВт
- Максимальная температура применения на рекуператоре до 1250°С
- Повышенная энергоэффективность за счет улучшения рекуперации тепла по сравнению с существующими горелками
- Низкоэмиссионное многоступенчатое сгорание
- Отличное распределение температуры благодаря сильному импульсу горелки
- Простое и недорогое базовое обслуживание
- Значительное уменьшение износа благодаря керамическим компонентам.

Технические данные


Тип горелки K-RHGB RN		25
Номинальная тепловая мощность [1]	кВт	25
Минимальная тепловая мощность [1]	кВт	13
Номинальное давление подключения потока газа [2]	мбар	50
Номинальное давление подключения потока воздуха, непрямой нагрев [2]	мбар	80
Максимальная температура на рекуператоре	°C	1250
Номинальный диаметр рекуператора	MM	98
Номинальный диаметр подключения газа	DN	15
Номинальный диаметр подключения воздуха для горения	DN	25
Номинальный диаметр подключения охлаждающего воздуха	DN	40
Топливо [3]		Природный газ, Пропан, Бутан

- Возможны технические изменения.
 [1] Различные значения мощности горелки возможны по запросу.
 [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок.
 [3] Другие топливные газы должны быть предварительно согласованы с NOXMAT.

СЕРИЯ K-RHGB RN "REMAT"

Основные размеры / Базовая горелка

					Основные	размеры				
Размер горелки	А	В	С	D	E1/E2/E3	F	G	G1	G2	Н
					MN	1				
K-RHGB 25-380 RN	113	200	210	98	18/M16/52	377	930	152	172	520
K-RHGB 25-560 RN	113	200	210	98	18/M16/52	557	1110	152	172	520

Основные размеры																
Размер горелки		Отработанный газ				В	Воздух для горения				Продувочный воздух			Газ		
	K L M			N	P Q R		?	S	Т		U		V			
		М	М		ММ		Дюйм		ММ	Дю	йм	ММ	Дю	ЙМ	Дюйм	
K-RHGB 25-380 RN	550	144	99	173	G1.1/4	223	38	129	G1	70	433	G3/8	175	478	Rp1/2	
K-RHGB 25-560 RN	550	144	99	173	G1.1/4	223	38	129	G1	70	433	G3/8	175	478	Rp1/2	

СЕРИЯ HGBE

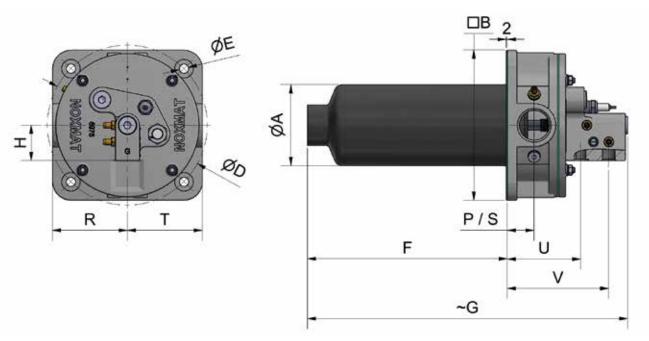
Высокоскоростная горелка для прямого и непрямого нагрева промышленных печей 9-160 кВт

Особенности & Преимущества

- Очень бюджетная высокоскоростная горелка
- Диапазон мощностей от 9 до 160 кВт
- Максимальная температура применения до 1300°C
- Подходит для применения как с холодным, так и с теплым воздухом (предварительно подогретый воздух до 400°C)
- Отличное распределение температуры благодаря сильному импульсу горелки
- Беспроблемное прямое зажигание при полной нагрузке благодаря надежной системе зажигания
- Простое обслуживание благодаря модульной конструкции
- Все подключения могут быть установлены с шагом 90°
- Прямой контроль пламени для обеспечения максимальной безопасности в любых условиях эксплуатации
- Возможно отдельное подключение охлаждающего воздуха для удобства проведения режимов охлаждения
- Простое и недорогое базовое обслуживание
- Доступно в базовой и полной комплектации

СЕРИЯ HGBE

Технические данные


Тип горелки HGBE		15	25	50	100	200
Номинальная тепловая мощность [1]	кВт	15	25	50	100	160
Минимальная тепловая мощность [1]	кВт	9	13	25	50	80
Номинальное давление подключения потока газа [2]	мбар	50	50	50	50	50
Номинальное давление подключения потока воздуха [2]	мбар	60	60	60	60	80
Максимальная температура на топочной трубе	°C	1300	1300	1300	1300	1300
Номинальный диаметр топочной трубы	MM	59	71	94	121	171
Номинальный диаметр подключения газа	DN	15	15	15	15	20
Номинальный диаметр подключения воздуха для горения	DN	20	25	40	40	50
Номинальный диаметр подключения охлаждающего воздуха	DN	20	40	40	40	50
Топливо [3]			Природ	цный газ, Пропа	н, Бутан	

- Возможны технические изменения. [1] Различные значения мощности горелки возможны по запросу. [2] Колебания давления не должны превышать +/- 5%; это также относится к работе группы горелок. [3] Другие топливные газы должны быть предварительно согласованы с NOXMAT.

Основные размеры / Базовая горелка

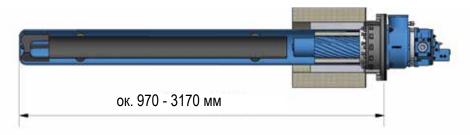
				Осн	овные размеры		
Размер горелки	А	В	D	Е	F*	G ***	Н
					MM		
HGBE 15	59	160	170	14	200/250/300/400	600	72.5
HGBE 25	71	175	190	14	200/250/300/400	560	77
HGBE 50	94	195	210	14	200/250/300/400/500/600	580	77
HGBE 100	121	225	240	14	200/250/300/400/500/600	580	53
HGBE 200	171	285	310	14	300/400/500	650	70

					Установочн	ные размерь	ı			
Размер горелки	Воз	здух для горе	ния	Охла	ждающий вс	здух	Продувочн	ый воздух	Г	аз
	Р	F	₹	S	T	**	Į	J		V
	N	1М	Дюйм	М	М	Дюйм	ММ	Дюйм	ММ	Дюйм
HGBE 15	34	80	G3/4	34	80	G3/4	87	G3/8	132	Rp1/2
HGBE 25	34	87.5	G1	34	87.5	G1.1/2	92	G3/8	137	Rp1/2
HGBE 50	40	97.5	G1.1/2	40	97.5	G1.1/2	107	G3/8	152	Rp1/2
HGBE 100	40	112.5	G1.1/2	40	112.5	G1.1/2	110	G3/8	152	Rp1/2
HGBE 200	56	142.5	G1.1/2	56	142.5	G2.1/2	157	G3/8	215	Rp3/4

^{*} Возможны разные длины, ** Отверстие опционально, ***при установочной длине F= 400 мм

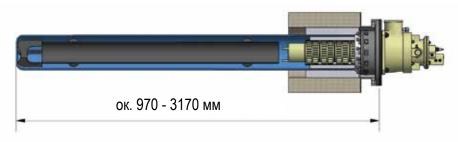
ИЗЛУЧАЮЩИЕ ТРУБЫ (К ТИП)

Излучающие трубы из керамики для непрямого нагрева промышленных печей



Особенности & Преимущества

- Особо высокая стойкость к окислению и коррозии (без образования окалины)
- Подходит как для горизонтальной, так и для вертикальной установки
- Излучающая труба, жаровая труба и дистанционные элементы выполнены из SiSiC-керамики, что обеспечивает высочайшую термостойкость до 1300°C
- Чрезвычайно высокая герметичность, в том числе и при температуре применения
- Стабильная механическая прочность
- Большой выбор различных размеров для широкого спектра применений
- Взаимозаменяемость с другими системами
- Простое обслуживание благодаря модульной конструкции с многоразовыми компонентами
- Возможны различные комбинации с горелками в керамическом и стальном исполнении, а также подходит для электрического нагрева



Возможности комбинирования с керамическими горелками

Danier reneriii		Диаметр излучающей трубы (мм)										
Размер горелки	80	90	100	115	140	145	165	200				
K-RHGBE 15												
K-RHGB 15												
K-RHGBE 30/ K-RHGB 25												
K-RHGBE 50/ K-RHGB 40												
K-RHGBE 100/ K-RHGB 80												
не комбинируется		с направляюще отраб. газа	ей трубой для		без направляюц	цей трубы для от	граб. газа					

со стальными горелками

Посмор городии	Диаметр излучающей трубы (мм)								
Размер горелки	140	145	165	200					
RHGB 15									
RHGB 25									
RHGB 40									

не комбинируется с направляющей трубой для отраб. газа

ИЗЛУЧАЮЩИЕ ТРУБЫ (СТАЛЬ)

Излучающие трубы из стали для непрямого нагрева промышленных печей

Особенности & Преимущества

- Подходит как для горизонтальной, так и для вертикальной установки
- Механически очень прочные
- Большой выбор различных размеров для широкого спектра применений
- Разнообразные формы изготовления (P-, Ф или U-образная и т.д.)
- Высокая мощность благодаря большой поверхности (напр. Ф-образная труба)
- Чрезвычайно высокая герметичность, в том числе и при температуре применения (в зависимости от материала)
- Взаимозаменяемость с другими системами
- Возможны различные комбинации с горелками в керамическом и стальном исполнении

Пример применения Р-трубы, изготовление

Возможности комбинирования с керамическими горелками

Page on conceive		Диам	етр излучающей труб	ы (мм)	
Размер горелки	100	120	150	200	300
K-RHGBE 15					
K-RHGB 15					
K-RHGBE 30/ K-RHGB 25					
K-RHGBE 50/ K-RHGB 40					
K-RHGBE 100/ K-RHGB 80					
K-RHGB 160					
не комбинируется	с напра	вляющей трубой для	без напра	вляющей трубы для отраб. :	газа

Dogger reporter		Диаметр излучающей трубы (мм)								
Размер горелки	120	150	200	300						
RHGB 15										
RHGB 25										
RHGB 40										
RHGB 80										
RHGB 100										
RHGB 160										
RHGB 250										
не комбинируется	с направляюще		без направляющей трубы для (отраб газа						

АКСЕССУАРЫ

Блок управления горелкой

Децентрализованные блоки управления горелкой NOXMAT имеют встроенный автомат горения и трансформатор розжига для надежного зажигания и контроля горелок. Адаптированное функциональное программное обеспечение специально настроено для работы с горелками NOXMAT и предлагает множество вариантов параметризации и диагностики.

Газорегуляторная установка с учётом расхода газа (ГРУ)

Линии подачи газа NOXMAT изготовлены в соответствии с DIN EN 746-2 и специально настроены для оптимальной работы газовых горелок на промышленных установках термообработки. Благодаря очень низким колебаниям давления обеспечивается оптимальная и, следовательно, наиболее энергоэффективная работа горелки

Дутьевой вентилятор

Дутьевые вентиляторы воздуха для горения от NOXMAT имеют особенно плоскую характеристическую кривую и могут дополнительно оснащаться преобразователем частоты для дальнейшего повышения эффективности. По аналогии с газорегуляторными установками NOXMAT, они специально настроены для оптимальной работы газовых горелок на промышленном оборудовании термообработки. Благодаря очень низким колебаниям давления обеспечивается оптимальная и, следовательно, наиболее энергосберегающая работа горелки.

Измерительная диафрагма (MB)

Диафрагма NOXMAT позволяет производить двойное измерение перепада давления во время работы горелки. В сочетании с дифференциальным реле давления они особенно хорошо подходят для динамического контроля давления воздуха для горения в соответствии с DIN EN 746-2.

Запасные и изнашиваемые детали

Все запасные и изнашиваемые части для наших горелок имеются в наличии в достаточном количестве. NOXMAT является сертифицированным в ЕС «Известным грузоотправителем» для грузовых авиаперевозок, что обеспечивает особенно быструю доставку по всему миру.

ЕДИНИЦЫ ИЗМЕРЕНИЯ

Энергия, Теплота

Обозначение	Наименование	Дж=H·м	кВт∶с	кВтч	ккал	R	БТЕ
1 Дж = Н⋅м	Джоуль= Ньютон-метр	1	0,001	2,7778*10-7	2,3885*10-4	0,12028	0,00095
1 кВтс	Киловатт-секунда	1000	1	2,7778*10-4	0,238846	120,276	3,7251*10-4
1 кВтч	Киловатт-час	3 000 000	3600	1	859,845	432 991	3412,14
1 ккал	Килокалории	4186,8	4,1868	0,001163	1	503,575	3,96381
1R.	Газовая постоянная	8,3142	0,00831	2,3095*10-4	0,001986	1	0,00788
1 БТЕ	Британская тепловая единица	1055,06	1,05506	0,000293	0,251995	126,963	1

Удельная теплоёмкость

Обозначение	Наименование	Дж/кг°С	ккал/кг °С	кВтч/кг °С	БТЕ/фунт °F
1 Дж/кг°С	Джоуль на килограмм на градус цельсия	1	2,38844*10-4	2,77778*10-7	2,38844*10-4
1 ккал/кг·°С	Килокалории на килограмм на градус цельсия	4186,8	1	1,163*10-3	1
1 кВтч/кг°С	Киловатт в час на килограмм на градус цельсия	3,6*10 ⁶	859,845	1	859,845
1 БТЕ/фунт [.] °F	Британская тепловая единица на фунт на градус фаренгейта	4186,8	1	1,163*10-3	1

Мощность

Обозначение	Наименование	Дж/с = 1 Вт	кВт	ккал/ч	БТЕ/с	БТЕ/мин	л. с.
1 Дж/с = 1 Вт	1 Джоуль в секунду = 1 Ватт	1	0,001	0,86	0,948*10-3	0,0569	1,36*10-3
1 кВт	Киловатт	1000	1	860	0,948	56,869	1,359
1 ккал/ч	Килокалорий в час	1,163	1,163*10-3	1	1,10*10-3	0,066	1,58*10-3
1 БТЕ/с	Британская тепловая единица в секунду	1060	1,06	0,252	1	60	1,43
1 БТЕ/мин	Британская тепловая единица в минуту	17,58	0,01758	15,13	0,01667	1	0,0239
л.с.	Лошадиная сила	735,48	0,735	0,176	0,697	41,827	1

Объем

Обозначение	Наименование	CM ³	дм³ = 1 л	M ³	дюйм³	фут³	гал (США)
1 cm ³	Кубический сантиметр	1	0,001	1*10-6	0,061102	-	0,00026
1 дм³ = 1л	Кубический дециметр = Литр	1000	1	1*10-3	61,0237	0,03531	0,26417
1 m³	Кубический метр	1*10-6	1000	1	61023,7	35,31	264,17
1 дюйм³	Кубический дюйм	16,3871	0,01639	16,39*10-6	1	0,00058	0,00433
1 фут³	Кубический фут	28316,8	28,3186	0,02832	17,28	1	7,48047
1 гал (США)	галлон (США)	3785,43	3,78543	3,785*10-3	231	0,13368	1

Площадь

Обозна- чение	Наименование	MM ²	СМ ²	M ²	а	га	KM ²	дюйм²	фут²	кв. миля
1 MM ²	MM ²	1	0,01	1*10 ⁻⁶	-	-	-	1,55*10-3	1,08*10-5	-
1 cm ²	CM ²	10	1	0,001	-	-	-	0,155	0,00108	-
1 M ²	M ²	1*106	10 000	1	0,01	0,0001	-	1550	10,7639	-
1 a	а	-	-	100	1	0,01	0,001	0,001	-	119,599
1 га	га	-	-	10 000	100	1	0,01	-	107 639	0,00386
1 км ²	KM ²	-	-	-	10 000	100	1	-	-	0,3861
1 дюйм²	дюйм²	6,45*102	6,4516	-	-	-	-	1	0,00694	-
1 фут²	фут²	9,29*104	929,03	0,0929	0,00093	-	-	144	1	-
1 кв. миля	миля	-	-	25899,9	258,999	2,58999	-	-	-	1

Длина

Обозна- чение	Наименова-ние	ММ	СМ	ДМ	М	КМ	дюйм	фут	ярд	миля
1 мм	Миллиметр	1	0,1	0,01	0,001	-	0,03937	0,00328	-	-
1 см	Сантиметр	10	1	0,1	0,01	-	0,3937	0,03281	-	-
1 дм	Дециметр	100	10	1	0,1	-	3,937	0,3281	0,109362	-
1 м	Метр	1000	100	10	1	0,001	39,37	3,28084	1,09362	-
1 км	Километр	-	100 000	10 000	1000	1	39 370	3280,84	1093,62	0,62137
1 дюйм	дюйм	25,4	2,54	0,254	0,0254	-	1	0,08333	0,0277778	0,07778
1 фут	фут	304,8	30,48	3,048	0,3048	-	12	1	0,33333	-
1 ярд (брит)	ярд (брит)	914,398	91,4398		0,914398	-	36	3	1	-
1 миля	Статутная миля	-	-	16 093,4	1609,34	1,609	63360	5280	1760	1

Bec, Macca

Обозна- чение	Наименование	r	КГ	Ţ	унция	фунт
1 r	Грамм	1	0,001	-	0,03527	0,0022
1 кг	Килограмм	1000	1	0,001	35,274	2,20462
1 т	Тонна	-	1000	1	35274	2204,62
1 унция	унция	28,3495	0,02835	-	1	0,0625
1 фунт	фунт	453,592	0,045359	0,00045	16	1

ЕДИНИЦЫ ИЗМЕРЕНИЯ

Давление

Обозна- чение	Наименование	Па= Н/м²	гПа= мбар	бар	м вод. ст.	гс/м² =ат	атм	Фунт-с / дюйм2 (psi)	Фунт-с / фут2 (psf)
1 Па=1 Н/м²	Паскаль	1	0,01	0,00001	0,0001	0,00001	-	0,00014	0,02089
1 мбар	Миллибар	100	1	0,001	0,0102	0,001	-	0,0145	-
1 бар	Бар	100 000	1000	1	10,1972	1,01972	0,98692	14,5037	2088,54
1 м вод. ст.	Метр водяного столба	9806,65	98,07	0,09807	1	0,1	0,09678	1,42233	204,816
1 гс/м²=1 ат	Техн. Атмосфера	98066,5	980,67	0,098067	10	1	0,96784	14,2233	2048,16
1 атм	Физич. Атмосфера	101325	1013,25	1,01325	10,3323	1,03323	1	14,696	2116,22
1 фунт-с/дюйм² (psi)	Фунт-сила на квадратный дюйм	6894,76	69,95	0,06895	0,70307	0,07031	0,06805	1	144
1 фунт-с/фут ² (psf)	Фунт-сила на квадратный фут	47,8803	0,48	0,00048	0,00488	0,00048	0,00047	0,00694	1

Таблица сортамента труб (DIN 2440)

Условный проход	Й	Наружный диаметр	Толщина стенки	Внутренний диаметр	Свободное сечение	Объём	Поверх- ность	Масса гладких труб
Дюйм	MM	dа≈мм	S MM	di≈мм	АF≈см²	V≈л/м	Ao≈m²/m	≈кг/м
1/8"	6	10,2	2	6,2	0,3	0,03	0,0032	0,407
1/4"	8	13,5	2,35	8,8	0,61	0,061	0,042	0,65
3/8"	10	17,2	2,35	12,5	1,23	0,123	0,054	0,853
1/2"	15	21,25	2,65	15,75	2,02	0,202	0,067	1,22
3/4"	20	26,75	2,65	21,25	3,66	0,366	0,084	1,58
1"	25	33,5	3,25	27	5,8	0,58	0,106	2,44
11/4"	32	42,25	3,25	35,75	10,12	1,012	0,133	3,14
11/2"	40	48,25	3,25	41,25	13,72	1,372	0,152	3,61
2"	50	50	3,65	42,5	22,06	2,206	0,189	5,1

ПЕРЕСЧЁТ

Температура	ϑ ° Цельсия	Т Кельвин	t ° Фаренгейт
Градус Цельсия °С	ϑ	T-273,16	5/9(t-32)
Кельвин К	ϑ+273,16	Т	5/9(t-455,67)
Градус Фаренгейта °F	9/5*ϑ+32	9/5*T-459,67	t

Температура	a °C	Т	°F
1°C	1	273.16	33.8
1K	-273.16	1	-239.36
1°F	-17.22	255.93	1

Плотность	г/см ³	фунт/дюйм³	фунт/фут³
1 г/см³	1	0.03613	62.428
1 фунт/кубич. дюйм	27.68	1	1728
1 фунт/кубич. фут	0.01602	5,79*10-4	1

Сила	Н	кН	MH
1 H	1	10 ⁻³	10 ⁻⁶
1 _K H	10 ³	1	10-3
1 MH	10 ⁶	10³	1

Время	С	нс	мкс	мс	мин
1 c	1	10 ⁹	10 ⁶	10³	16,66*10 ⁻³
1 нс	10 ⁻⁹	1	10 ⁻³	10-6	16,66*10 ⁻¹²
1 мкс	10-6	10³	1	10 ⁻³	16,66*10 ⁻⁹
1 мс	10 ⁻³	10 ⁶	10³	1	16,66*10 ⁻⁶
1 мин	60	60*10 ⁹	6*10 ⁶	6*10 ³	1

ОБЩАЯ ИНФОРМАЦИЯ

Атмосферное давление	Дав	ление
Высота над уровнем моря м	торр	мбар = гПа
0	760	1013
200	742	989
400	724	966
600	707	943
800	690	921
1000	673	899
1200	657	876
1400	641	854
1600	626	835
1800	611	851
2000	596	795
2200	581	775
2400	567	756
2600	553	737
2800	539	719
3000	525	701
3500	493	657
4000	463	616
5000	405	540
10 000	198	264
20 000	41	55

	Температура	
К	°C	°F
0	-273	-460
273	0	32
373	100	212
673	400	752
873	600	1112
1073	800	1472
1173	900	1652
1223	950	1742
1273	1000	1832
1323	1050	1922
1373	1100	2012
1423	1150	2102
1473	1200	2192
1523	1250	2282
1573	1300	2372

Значения NOх в различных единицах измерения

	Относител	ьно энергии (Прир	одный газ)			
ррт при 3% О2	ррт при 5% О2	мг/м³ при 3% О2	мг/м³ при 5% О2	мг/кВт∙ч	мг/МДж	#/МБТЕ
10	9	21	18	20	6	0.01
20	18	41	36	41	11	0.03
30	27	62	55	61	17	0.04
40	36	82	73	81	23	0.05
50	44	103	91	102	28	0.07
60	53	123	109	122	34	0.08
70	62	144	128	142	40	0.09
80	71	164	146	163	45	0.11
90	80	185	164	183	51	0.12
100	89	205	182	204	57	0.13
120	107	246	219	244	68	0.16
140	124	287	255	285	79	0.18
160	142	328	292	326	90	0.21
180	160	369	328	366	102	0.24
200	178	410	364	407	113	0.26
250	222	513	456	509	141	0.33
300	267	615	547	611	170	0.39
350	311	718	638	712	198	0.46
400	356	820	729	814	226	0.53
450	400	923	820	916	254	0.59
500	444	1025	911	1018	283	0.66
600	533	1230	1093	1221	339	0.79
700	622	1435	1276	1425	396	0.92
800	711	1640	1458	1628	452	1.05

ЗАМЕТКИ

АНКЕТА ДЛЯ ВЫБОРА ГОРЕЛКИ

	Запрос горелки							
0	Заказчик							
	Проект / Пользов печи							
	Тип печи							
1	Рабочая температура							
			мин:	°C	макс:	°C		°C
2	Вид газа							
		Прир. газ (NG)::		Жидк. газ:		Другое::		
3	Тип горелки							
	Кол-во горелок		штук:		Мощность горел	ТКИ :		кВт
	Установка горелки				горизонтально:		вертикально:	
	Подключение охлажд. воздух	 (a			C::		без:	
4	Блок управления горелкой		Да:		нет:			
	Profibus		Да:		нет:			
	Profinet		Да:		нет:			
	Режим работы		Вкл / Выкл:		Бол / мал::		Плавное:	
5	Э-Магн клапан /вентиль			Нет предпочтений:		Производитель:		
								'
6	Нагрев излучающими трубам	IN		Да:		нет:		
	Форма излучающей трубы		Прямая:		Р-Тип:		Ф - Тип:	
			U-тип:		Другое:			
	Излуч труба поставляется			Да:		Нет:		
	Внешний диаметр			MM				
	Внитренний диаметр			MM				
	Эффективн излучающая дли	на		MM				
	Общая длина			ММ				
	Жаровая труба поставляется			Да::		Нет:		
7	Комментарии							
8	Клиент		Дата:					
			Фирма					
			Фамил					

история

1992	Основание компании как независимой фирмы под управлением
	Г-н Рудольф Дистль и к.т.н. Вольфганг Харбек
1993	Переезд с 6 сотрудниками во вновь построенное производственное здание с
	административными помещениями в качестве первого инвестора во вновь созданном
	индустриальном парке Эдеран.
1996	Успешная сертификация по ISO 9001
1998	Испытания первых горелок в керамическом исполнении
2000	Разработка керамических излучающих труб
2006	Основание офиса продаж со складом в Хагене (NRW)
2007	Расширение за счет строительства современного производственного цеха с
	увеличением административных помещений
2011	Основание NOXMAT Technique Beijing Co. Ltd. В Китае
2012	Укрепление сервисной команды NOXMAT путем приобретения компании WAC
2017	ЕТАМАТ - Новое поколение горелок с рекордной энергоэффективностью выходит к
	25-летию компании на рынке
2019	Сертификация по новому стандарту ISO 9001:2015 и Основание индийской дочерней компании NOXMAT
	Combustion Technology Pvt Ltd в Пуне.
2021	Расширение ассортимента продукции за счет включения решений по электрическому нагреву для
	промышленного применения.
2022	г. Приобретение инженерного бюро по технологиям автоматизации - строительство шкафов управления
	для ромышленных систем термообработки.
2022	Открытие дочерней компании в США: Noxmat USA Inc. / Sterling Heights
2023	Расширение ассортимента продукции за счет высокоэффективных горелок Wiedemann для алюминиевой
	промышленности.

NOXMAT GmbH

Ringstraße 7, D-09569 Oederan Tel: +49 37292 65 03 0 Fax: +49 37292 65 03 29 E-Mail: info@noxmat.de